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Abstract. A proper vertex coloring of a graph G is equitable if the sizes of color classes

differ by at most one. The equitable chromatic threshold χ∗eq(G) of G is the smallest integer
m such that G is equitably n-colorable for all n ≥ m. We show that for planar graphs G with

minimum degree at least two, χ∗eq(G) ≤ 4 if the girth of G is at least 10, and χ∗eq(G) ≤ 3 if

the girth of G is at least 14.

1. Introduction

Graph coloring is a natural model for scheduling problems. Given a graph G = (V,E),
a proper vertex k-coloring is a mapping f : V (G) → {1, 2, . . . , k} such that f(u) 6= f(v) if
uv ∈ E(G). The notion of equitable coloring is a model to equally distribute resources in a
scheduling problem. A proper k-coloring f is equitable if

|V1| ≤ |V2| ≤ . . . ≤ |Vk| ≤ |V1|+ 1,

where Vi = f−1(i).
The equitable chromatic number of G, denoted by χeq(G), is the smallest integer m such

that G is equitably m-colorable. The equitable chromatic threshold of G, denoted by χ∗eq(G),
is the smallest integer m such that G is equitably n-colorable for all n ≥ m. It is clear that
χeq(G) ≤ χ∗eq(G) for any graph G. They may be different: for example, χeq(K7,7) = 2 while
χ∗eq(K7,7) = 8.

Hajnal and Szemerédi [2] proved that χ∗eq(G) ≤ ∆(G) + 1 for any graph G with maximum
degree ∆(G). The following conjecture made by Chen, Lih and Wu [1], if true, strengthens the
above result.

Conjecture 1 (Chen, Lih and Wu [1]). For any connected graph G different from Km, C2m+1

and K2m+1,2m+1, χ∗eq(G) ≤ ∆(G).

Except for some special cases, the conjecture is still wide open in general.
Another direction of research on equitable coloring is to consider special families of graphs.
For planar graphs, Zhang and Yap [5] proved that a planar graph is equitably m-colorable if

m ≥ ∆ ≥ 13. When the girth g(G) is large, fewer colors are needed.

Theorem 1.1 (Wu and Wang, [4]). Let G be a planar graph with δ(G) ≥ 2.
(a) If g(G) ≥ 26, then χ∗eq(G) ≤ 3;
(b) If g(G) ≥ 14, then χ∗eq(G) ≤ 4.

The purpose of this paper is to improve the above two results. Our main results are contained
in the following theorems.

Theorem 1.2. If G is a planar graph with δ(G) ≥ 2 and g(G) ≥ 10, then χ∗eq(G) ≤ 4.
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Theorem 1.3. If G is a planar graph with δ(G) ≥ 2 and g(G) ≥ 14, then χ∗eq(G) ≤ 3.

Since K1,n is not equitably k-colorable when n ≥ 2k − 1, we cannot drop the requirement of
δ(G) ≥ 2 in the theorems. On the other hand, we do not believe that the girth conditions are
best possible. It would be very interesting to find the best possible girth condition for both 3-
and 4-equitable coloring.

2. Preliminaries

Before starting, we introduce some notation. A k-vertex is a vertex of degree k; a (≥ k)-
and a (≤ k)-vertex have degree at least and at most k, respectively. A thread is a path with
2-vertices in its interior and (≥ 3)-vertices as its endpoints. A k-thread has k interior 2-vertices.
If a (≥ 3)-vertex u is the endpoint of a thread containing a 2-vertex v, and the distance between
u and v on the thread is l + 1, then we say that u and v are loosely l-adjacent. Thus “loosely
0-adjacent” is the same as the usual “adjacent.”

All of our proofs rely on the techniques of reducibility and discharging. We start with a
minimal counterexample G to the theorem we are proving, and the idea of the reduction is as
follows. We remove a small subgraph H (for instance, a vertex of degree at least three, together
with its incident 2-threads) from the graph G. We have an equitable k-coloring f of G − H,
and we attempt to extend f to an equitable coloring of G. This can be done if we can equitably
k-color H itself, with some extra conditions: namely, the color classes which should be “large”
in H are predetermined by the existing coloring of G − H; and secondly, the parts of H with
edges to G−H have color restrictions. Such a graph H is called a reducible configuration.

Let the maximum average degree of G be mad(G) = max{ 2|E(H)|
|V (H)| : H ⊆ G}. A planar graph

G with girth at least g has maximum average degree mad(G) < 2g
g−2 . We let the initial charge

at vertex v be M(v) = d(v) − 2g
g−2 . We will introduce some rules to re-distribute the charges

(discharging), and after the discharging process, every vertex v has a final charge M ′(v). Note
that

(1)
∑

v∈V (G)

M ′(v) =
∑

v∈V (G)

M(v) =
∑

v∈V (G)

(d(v)− 2g
g − 2

) < 0.

We will show that either we have some reducible configurations, or the final charges are all
non-negative. The former contradicts the assumption that G is a counterexample, and the latter
contradicts (1).

We will prove the theorems on 3-coloring and 4-coloring separately. Before the proofs, we
provide some properties useful to equitable m-coloring with m ≥ 3.

Let m ≥ 3 be an integer. Let G be a graph which is not equitably m-colorable with |V |+ |E|
as small as possible.

Observation 2.1. G is connected.

Proof. Let H1, H2, · · · , Hk be the connected components of G where k ≥ 2. By the choice of
G, both H = H1 ∪ H2 ∪ Hk−1 and Hk are equitably m-colorable. An equitable m-coloring of
H with |V1(H)| ≥ |V2(H)| ≥ · · · ≥ |Vm(H)| and an equitable m-coloring of Hk with |V1(Hk)| ≤
|V2(Hk)| ≤ · · · ≤ |Vm(Hk)| induce an equitable m-coloring of G, contradicting the choice of
G. �

3. Equitable 4-coloring

In this section, we prove Theorem 1.2. We start with some useful lemmas.
The following lemma is an extension of a fact first observed in [3], and we use it to prove

Lemma 3.2.

Lemma 3.1. Let S = {x1, x2, ..., xm} be a set of m distinct vertices in G. Suppose each xi,
i = 2, . . . ,m, has the same m colors available, and x1 has at least one color available. If G− S
has an equitable m-coloring, and

(2) |NG(xi)− S| ≤ m− i
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for 1 ≤ i ≤ m, then G has an equitable m-coloring.

Lemma 3.2. Let G be a graph and P = y0y1...ytyt+1 such that t ∈ {4, 5}, and d(yi) = 2 for
each i = 1, .., t. Let m ≥ 4 be an integer and a, b ∈ {1, 2, ...,m}. Let x be an arbitrary vertex
in {y1, y2, ..., yt}. If G− {y1, ..., yt} has an equitable m-coloring f , then f can be extended to G
such that f(x) 6= a, b unless m = 4, t = 5, and x = y4 or x = y2.

Proof. Let V1, · · · , Vm be the m color classes of G − S under f with |V1| ≤ |V2| ≤ · · · ≤ |Vm|,
where S = {y1, y2, · · · , yt}. Assume x = yi for some i ≤ d t

2e by symmetry.
When m ≥ t, we arrange the yi’s into a list x1, x2, . . . , xt such that x1 = x and |N(xt)∩S| = 2,

and assign every vertex other than x with the same color list {1, 2, . . . , t}, and assign x a color
different from a, b and from the color of the neighbor of x in G − S. Then by Lemma 3.1, we
can extend f to G such that f(x) 6∈ {a, b}.

If m < t, then m = 4 and t = 5, and in this case, x ∈ {y1, y3}. If 1 6∈ {a, b, f(y0)}, then assign
1 to y1 and y3, assign a color c4 ∈ {2, 3, 4} − {f(y6)} to y5, and assign the other two colors in
{2, 3, 4} − {c4} arbitrarily to y2 and y4. If 1 ∈ {f(y0), a, b)}, then |{2, 3, 4} − {f(y0), a, b}| ≥ 1.
Let {x, x′} = {y1, y3} and c2 ∈ {2, 3, 4}− {f(y0), a, b}. Assign 1 to y2 and y4 and c2 to x; assign
a color c3 ∈ {2, 3, 4} − {c2, f(y0)} to x′; and assign the remaining color c4 ∈ {2, 3, 4} − {c2, c3}
to y5. If c4 = f(y6), swap colors on y5 and y4. In either case, f can be extended to G. �

Lemma 3.3. Let xy1y2y be a 2-thread of G and m ≥ 4 be an integer. If G has an m-equitable
coloring f such that f(x) 6= f(y), then f can be extended to G.

Proof. Let f be an equitable m-coloring of G−{y1, y2} and let V1, · · · , Vm be the m color classes
with |V1| ≤ |V2| ≤ · · · ≤ |Vm|. If f(x) 6= f(y), then there is a bijection φ : {1, 2} 7→ {1, 2} such
that φ(1) 6= f(x) and φ(2) 6= f(y). Assign φ(1) to y1 and φ(2) to y2. Hence f can be extended
to G. �

Lemma 3.4. Let xy1y2y be a 2-thread and xy3z be a 1-thread incident with x. Let m ≥ 4 be an
integer. If G − {y1, y2, y3} has an equitable m-coloring f with f(x) 6∈ {f(y), f(z)}, then f can
be extended to G.

Proof. Let V1, · · · , Vm be the m color classes with |V1| ≤ |V2| ≤ · · · ≤ |Vm|. If f(x) ∈ {1, 2, 3},
let a = f(x) and then a 6= f(y). Otherwise choose a color a ∈ {1, 2, 3} such that a 6= f(y). Let
b ∈ {1, 2, 3} − {a, f(z)} and c ∈ {1, 2, 3} − {a, b}. Then b 6∈ {f(x), f(z)} and c 6= f(x). Assign a
to y2, b to y3 and c to y1. Thus we obtain an equitable m-coloring of G. �

Proof of Theorem 1.2 Let G be a minimal counterexample to Theorem 1.2 with |V | + |E|
as small as possible. That is, G is planar with δ(G) ≥ 2 and girth at least 10, and G is not
equitably m-colorable for some integer m ≥ 4 but any proper subgraph of G with minimum
degree at least 2 is equitably m-colorable for each m ≥ 4.

Claim 3.1. G has no t-thread with t ≥ 3, and G has no thread with same endvertices.

Proof. Let P = v0v1 · · · vtvt+1 be a t-thread in G with t ≥ 3.
If v0 6= vt+1 or d(v0) ≥ 4, consider G1 = G − {v1, · · · , vt}. Then δ(G1) ≥ 2. By the choice

of G, G1 has an equitable m-coloring. Let V1, · · · , Vm be the m color classes with |V1| ≤ |V2| ≤
· · · ≤ |Vm|. We can extend the coloring to G to obtain an equitable m-coloring of G as follows:
first color the vertex vi by the color k where k ≡ i (mod m) for each i = 1, · · · t. Swap colors of
v1 and v2 if the colors of v1, v0 are the same, and further swap the colors of vt−1, vt if there is
any conflict between vt and vt+1.

Now assume that v0 = vt+1 and d(v0) = 3. Let x ∈ N(v0) and x 6= v1, vt. If d(x) ≥ 3,
consider G2 = G − {v0, v1, · · · , vt}. Then δ(G2) ≥ 2. By the choice of G, G2 has an equitable
m-coloring. Let V1, · · · , Vm be the m color classes with |V1| ≤ |V2| ≤ · · · ≤ |Vm|. We can extend
the coloring to G to obtain an equitable m-coloring of G as follows: first color the vertex vi the
color k where k ≡ i (mod m); if 0 ≡ t (mod m), swap the colors of vt and vt−1; if the colors
of x, v0 are the same, further swap the colors of v0, vi where 1 ≤ i ≤ 2 and the color of vi is
different from that of vt (such vi exists since v0, v1, v2 are colored differently).
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If d(x) = 2, then let Q = x0x1 · · ·xqxq+1 be the thread containing the edge v0x1 where x1 = x
and x0 = v0. Consider the graph G3 = G − {v0, x1, · · · , xq, v1, · · · , vt}. Then δ(G3) ≥ 2. By
the choice of G, G3 has an equitable m-coloring. Let V1, · · · , Vm be the m color classes with
|V1| ≤ |V2| ≤ · · · ≤ |Vm|. We first extend the coloring to G to obtain an equitable m-coloring
of G− {v1, · · · , vt} as follows: first color the vertex xi the color k where k ≡ i+ 1(mod m) for
each i = 0, 1, · · · q; if xq and xq+1 have the same color, swap the colors of xq and xq−1. Then we
further extend the coloring to G similarly to the case where d(v0) ≥ 4. �

Let x be a vertex of degree d = d(x) ≥ 3. Then x is the endvertex of d threads. Denote
T (x) = (a2, a1, a0) where ai is the number of i-threads incident with x. Denote t(x) = 2a2 + a1.

Claim 3.2. For a 4-vertex x, t(x) ≤ 5.

Proof. Suppose t(x) ≥ 6. By Claim 3.1, x is not incident with any t-thread where t ≥ 3. Since
t(x) ≥ 6, x is incident with at least two 2-threads. Label two 2-threads incident with x as
xx1z1y1, xx2z2y2.

We first show that x is incident with at most two 2-threads. Suppose that x is incident with
at least three 2-threads. Label the third 2-thread incident with x as: xx3z3y3. Label the fourth
thread incident with x as xx4z4y4, xz4y4, or xy4, depending on whether it is a 2-thread, or a
1-thread, or a 0-thread. Denote A = {x, xi, zi|1 ≤ i ≤ 4}, A = {x, xj , zi|1 ≤ i ≤ 4, 1 ≤ j ≤ 3},
or A = {x, xi, zi|1 ≤ i ≤ 3}, depending on whether x is incident with a 0-thread, a 1-thread, or
four 2-threads, respectively. By the choice of G, G−A has an equitable m-coloring f .

Now if x is not incident with a 0-thread, then by Lemma 3.2, f can be extended to G −
{x1, x2, z1, z2} such that f(x) 6∈ {f(y1), f(y2}. By Lemma 3.3, it can be further extended to
G− {x1, z1} since f(x) 6= f(y2) and to G since f(x) 6= f(y1). This contradicts the choice of G.

If, on the other hand, x is incident with a 0-thread, then first extend the coloring f of G−A
to G − {x1, z1} − xy4 such that f(x) 6∈ {f(y1), f(y4)} by Lemma 3.2. Since f(x) 6= f(y4), it is
also an equitable m-coloring of G− {x1, z1}. Since f(x) 6= f(y1), by Lemma 3.3, the coloring of
G− {x1, z1} can be extended to G, a contradiction. This proves that x is incident with at most
two 2-threads.

Now we have t(x) ≤ 6. Since t(x) ≥ 6 and x is incident with at most two 2-threads, we
have t(x) = 6 and T (x) = (2, 2, 0). Label the two 1-threads incident with x as xx3y3 and
xx4y4. Then G − {x, z1, z2, xi|1 ≤ i ≤ 4} has an equitable m-coloring. Since y3x3xx2z2y2 is
a 4-thread in G − {x1, z1, x4}, by Lemma 3.2, f can be extended to G − {x1, z1, x4} such that
f(x) 6∈ {f(y1), f(y4)}. By Lemma 3.4, it can be further extended to G since f(x) 6= f(y1). This
contradicts the choice of G, proving Claim 3.2. �

Claim 3.3. For a 3-vertex x, either t(x) ≤ 2 or T (x) = (1, 2, 0) and m = 4.

Proof. We first prove that T (x) 6= (1, 2, 0) if m ≥ 5. Suppose T (x) = (1, 2, 0) and m ≥ 5. Label
the two 1-thread incident with x as xx1y1 and xx2y2 and label the 2-thread as xx3x4y3. Let
A = {x, x1, x2, x3, x4}. Then δ(G−A) ≥ 2 and it has an equitable m-coloring f . Let V1, · · · , Vm

be the m color classes with |V1| ≤ |V2| ≤ · · · ≤ |Vm|. Let {a, b, c, d, e} = {1, 2, 3, 4, 5} such that
a 6= f(y1), b 6= f(y2), and c 6= f(x4). Assign a to x1, b to x2, c to x4, d to x, and e to x3. It is
easy to see that the extension of f is an equitable m-coloring of G, contradicting the choice of
G.

Now assume T (x) 6= (1, 2, 0). We prove t(x) ≤ 2. Suppose t(x) ≥ 3 and T (x) 6= (1, 2, 0).
By Claim 3.1, x is not incident with any t-thread where t ≥ 3. We first consider the case
where x is not incident with a 2-thread. Then T (x) = (0, 3, 0). Label the three 1-threads
incident with x as xxiyi for i = 1, 2, 3. Note that d(yi) ≥ 3 and d(xi) = 2. Consider the graph
G1 = G−{x, x1, x2, x3}. Then δ(G1) ≥ 2 and by the choice of G, G1 has an equitable m-coloring.
Let V1, · · · , Vm be the m color classes with |V1| ≤ |V2| ≤ · · · ≤ |Vm|. Let {1, 2, 3, 4} = {a, b, c, d}
such that no color in {a, b, c} is used by all three vertices y1, y2, y3. An equitable m-coloring of
G can be obtained by coloring the vertices x1, x2, x3 with the colors a, b, c such that no conflict
occurs and coloring the vertex x with the color d. This contradicts the choice of G. Hence
T (x) 6= (0, 3, 0) and x is incident with at least one 2-thread.
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Now we consider the case a2 6= 0. Let xx1x2y be one 2-thread incident with x. If t(x) ≥ 5,
then G − {x1, x2} has minimum degree 2 and has a t-thread, say P , containing x for some
4 ≤ t ≤ 5. Let G1 be the subgraph obtained from G − {x1, x2} by further deleting the degree-
two vertices in P . Then G1 has an equitable m-coloring f . By Lemma 3.2, f can be extended
to G − {x1, x2} such that f(x) 6= f(y). By Claim 3.3, f can be further extended to G. This
contradicts the choice of G. Assume 3 ≤ t(x) ≤ 4. Since x is incident with at least one 2-thread
and T (x) 6= (1, 2, 0), x must be incident with a 0-thread. Call it xu. Since t(x) ≥ 3, G − xu
has a t-thread P containing x where 4 ≤ t ≤ 5. Let G2 be the subgraph obtained from G− xu
by further deleting the degree-two vertices in P . Then G2 has an equitable m-coloring f . By
Lemma 3.2, f can be extended to G− xu such that f(x) 6= f(u). The extension of f is also an
equitable m-coloring of G, a contradiction.

This completes the proof of Claim 3.3. �

A 3-vertex x is bad if T (x) = (1, 2, 0). Note that if m ≥ 5, the configuration T (x) = (1, 2, 0)
with d(x) = 3 is still reducible; thus there are no bad 3-vertices when m ≥ 5. The following two
claims deal with two reducible configurations for m = 4.

Claim 3.4. Assume m = 4. Let x be a bad 3-vertex and y be a vertex loosely 1-adjacent to x.
Then
(1) if d(y) = 3, then t(y) = 1;
(2) if d(y) = 4, then y is loosely 1-adjacent to at most one bad 3-vertex.

Proof. Label the threads incident with x as: xx1x2u1, xx3u2, and xx4y.
(1) Suppose that d(y) = 3 and t(y) ≥ 2. Then by Claim 3.4, either t(y) = 2 or y is a bad

3-vertex. If t(y) = 2, then T (y) = (0, 2, 0). If y is a bad 3-vertex, then T (y) = (1, 2, 0). In
either case, y is incident with exactly two 1-threads. Label the other 1-thread incident with y
as: yy1z. Label the third thread incident with y as yu or yy2y3u depending on whether it is a
0-thread or a 2-thread. Denote A = {x, y, y1, xi|1 ≤ i ≤ 4}; denote B = ∅ if y is incident with a
0-thread, and B = {y2, y3} otherwise. Consider the graph G1 = G − [A ∪ B]. Then δ(G1) ≥ 2
and by the choice of G, G1 has an equitable 4-coloring. Any 4-equitable coloring of G1 can
be extended to G − A. Hence G − A has an equitable 4-coloring f . By Lemma 3.2, f can be
extended to G− {x1, x2, x3} such that f(x) 6∈ {f(u1), f(u2)}. (If f(y) = f(u) in case of B = ∅
or f(y) = f(y2) in case of B 6= ∅, switch colors on y and x4.) By Lemma 3.4, the equitable
4-coloring of G − {x1, x2, x3} can be further extended to G. This contradicts the choice of G,
proving (1).

(2) Suppose that d(y) = 4 and y is loosely 1-adjacent to two bad 3-vertices, say x, z. Label
the threads incident with z as zz1z2u3, zz3u4, and zy1y. Let u5 and u6 be the endvertices
of the two threads incident with y other than the ones adjacent to x and z. Denote A =
{x, y, z, y1, xi, zj |1 ≤ i ≤ 4, 1 ≤ j ≤ 3}. Let B denote the set of 2-vertices on the two threads
incident with y other than yy1z and yx4x. Let G1 = G − [A ∪ B]. Then δ(G1) ≥ 2 and G1

has an equitable 4-coloring f . Let |V1| ≤ |V2| ≤ |V3| ≤ |V4| be the 4 color classes. Note that if
y is incident with a 2-thread, then f can be extended to the 2-vertices in the 2-thread. In the
following, without loss of generality, we assume that y is not incident with a 2-thread.

We first consider the case where y is incident with exactly two 1-threads: xx4y and zy1y.
Then B = ∅. By Lemma 3.2, extend f to y1yx4x such that f(y) 6∈ {f(u5), f(u6)}. Note that
the colors f(x), f(x4), f(y), f(y1) are different. If f(x) ∈ {f(u1), f(u2)}, then either f(x4) or
f(y1) is not in {f(u1), f(u2)}. If f(x4) 6∈ {f(u1), f(u2)}, switch the colors on f(x) and f(x4).
If f(y1) 6∈ {f(u1), f(u2)}, switch the colors on f(x) and f(y1). Hence we have an extension of f
on xx4yy1 such that f(x) 6∈ {f(u1), f(u2)}. By Lemmas 3.2 and 3.4, f can be further extended
to G, a contradiction.

Now we consider the case where y is incident with at least three 1-threads. Label the third
1-thread as yy2u5 and the fourth thread incident with y as yy3u6 or yu6 depending on whether
it is a 0-thread or a 1-thread. Then either B = {y2} or B = {y2, y3} depending on whether the
fourth thread incident with y is a 0-thread or a 1-thread. We first extend f to {x4, y, y1} ∪ B.
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Let a, b be two colors in {1, 2, 3, 4} − {f(u5), f(u6)}. If B = {y2}, then assign a, b randomly to
y2 and y. Assign the remaining two colors randomly to x4 and y1. If B = {y2, y3}, then assign
a, b randomly to y2 and y3 first. If 1 6∈ {a, b}, assign 1 to x4 and y1 and the fourth color to y. If
1 ∈ {a, b}, assign 1 to x4 and the remaining two colors to y and y1 randomly. By Lemma 3.2,
the equitable 4-coloring can be further extedned to the two 4-paths x2x1xx3 and z2z1zz3. Thus
we may obtain an equitable 4-coloring of G. It contradict the choice of G, proving (2). �

Since g(G) ≥ 10, we have mad(G) < 2.5. Let M(x) = d(x) − 2.5 be the initial charge of x for
x ∈ V . We will re-distrubte the charges among vertices according to the discharging rules below:

(R1) Each 2-vertex receives 1
4 from each of the endvertices of the thread containing it.

(R2) If x is a bad 3-vertex, x receives 1
4 from each loosely 1-adjacent vertex.

Let M ′(x) be the charge of x after application of rules R1 and R2. The following Claim shows
a contradiction to (1), which implies the truth of Theorem 1.2.

Claim 3.5. M ′(x) ≥ 0 for each x ∈ V .

Proof. If d(x) = 2, then M ′(x) = 2− 2.5 + 2
4 = 0.

Assume d(x) = 3. If x is not a bad vertex, then by Claim 3.4, t(x) ≤ 2 and x sends out at
most 2× 1

4 = 1
2 . If x is a bad vertex, then t(x) = 4 and it sends out 2× 1

4 = 1. It also receives
1
4 from each loosely 1-adjacent vertex. Hence M ′(x) ≥ 3− 2.5− 1 + 2× 1

4 = 0.
Assume d(x) = 4. Then x is loosely 1-adjacent to at most one bad 3-vertex by Claim 3.4.

Hence x sends out at most max{ t(x)
4 , 1

2 + t(x)−1
4 } = t(x)+1

4 ≤ 3
2 since t(x) ≤ 5 by Claim 3.2.

Therefore M ′(x) ≥ 4− 2.5− 3
2 = 0.

Assume d(x) ≥ 5. Let y be a (≥ 3)-vertex that is loosely k-adjacent to x. If k = 2, then x
sends out 2× 1

4 via this 2-thread. If k = 1, then x sends out 1
4 via this thread if y is not a bad

vertex and sends out 2× 1
4 = 1

2 via this 1-thread if y is a bad vertex. In summary, x sends out at
most 1

2 via each thread incident with it. Hence M ′(x) ≥ d(x)− 2.5− d(x)
2 = d(x)

2 − 2.5 ≥ 0. �

4. Reduction lemmas for equitable 3-coloring

We now proceed to equitable 3-coloring. We first prove two lemmas which give conditions for
the existence of reducible configurations.

As we described in Section 2, a subgraph H is reducible if we can equitably 3-color H, such
that the color classes which should be “large” in H are predetermined by the existing coloring
of G−H, and the parts of H with edges to G−H have color restrictions.

We will handle the latter condition by means of lists of allowed colors in H. We will handle
the former condition by predetermining the sizes of the color classes. Thus we have the following
definition.

Definition 2. Let H be a graph with list assignment L = {lv}, with lv ⊂ {1, 2, . . . , k}. Call
H descending-equitably L-colorable if H can be L-colored such that |V1| ≥ |V2| ≥ · · · ≥ |Vk| ≥
|V1| − 1.

Note that if G − H has an equitable k-coloring with |V1| ≤ |V2| ≤ · · · ≤ |Vk| ≤ |V1| + 1,
then G is equitably k-colorable if H is descending-equitably L-colorable. Because of this, a
descending-equitably L-colorable subgraph H is a reducible configuration in G.

Let av
i be the number of i-threads incident to vertex v. If it is clear from the context, we drop

v in the notation. The following two lemmas give simple ways to identify reducible configurations
using relations involving av

i .

Lemma 4.1 (Reducing a vertex with at most one 0-thread). Let S be a subdivided star of order
s with root x, and let L = {lv} be a list assignment to the vertices of S such that lv = {1, 2, 3}
if v is not a leaf or the root, lv ⊂ {1, 2, 3} with |lv| = 2 if v is a leaf, and |lx| ≥ 2. Let d(x) ≤ 6
and assume ai = 0 unless i ∈ {0, 1, 2, 4}. If 2a4 + a2 ≥ a1 + 1 + ε and a4 ≥ d(x)− 4, then S is
descending-equitably L-colorable, where ε = 3ds/3e − s.
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Proof. Let c, c′ be the colors allowed at x. Let pi (1 = 1, 2, 3) be the desired size of Vi. Let Si

(i = c, c′) be a maximum independent set such that Si contains the root, and such that i ∈ lv for
all v ∈ Si. Then no vertex of a 1-thread is in any of the Si; each 2-thread contains a vertex (the
leaf) that is in at least one of Si’s; and for each 4-thread, the leaf is in at least one of the Si’s,
and the vertex 1-vertex-away from the root is in both of the Si’s. Thus |Sc|+ |Sc′ | ≥ 2+3a4 +a2.

If |Sc|+ |Sc′ | > 2(ds/3e − 1), then some color may be assigned to the root and extended to a
large enough independent set. Thus we assume that 2 + 3a4 + a2 ≤ |Sc|+ |Sc′ | ≤ 2(ds/3e− 1) =
2
3 (s+ε−3) = 2

3 (4a4+2a2+a1+1). Therefore we have a4+12 ≤ a2+2(a1+ε+1) ≤ a2+2(2a4+a2),
that is a4 + a2 ≥ 4. So a2 + 2(a1 + ε + 1) ≥ a4 + 2 ≥ 6 − a2, and we have a1 + a2 + ε ≥ 7, a
contradiction since a1 + a2 ≤ 4 and ε ≤ 2.

Let c be the color assigned to the root, and let c′ and c′′ be the other two colors. Without
loss of generality assume we want |Vc′ | ≥ |Vc′′ |. We color with c′ first. By hypothesis, we know
that 2a4 +a2 ≥

⌈
s
3

⌉
, so there is an independent set I large enough for c′ which misses the root x,

all leaves, and the vertices colored with c. Color I with c′, color the remaining vertices with c′′.
Now I contains no leaves, and it is easy to see we can pair the vertices colored c′′ with vertices
colored c′ such that if there is any conflict on a leaf, the colors can be switched without altering
the rest of the coloring. �

Lemma 4.2 (Reducing two vertices connected by a 1-thread; one vertex may have one 0-thread).
Suppose x and y are connected by a 1-thread, and d(x) + d(y) ≤ 8. Let S be the graph of order s
induced by the union of the subdivided star with root x and the subdivided star with root y. Let
L = {lv} be a list assignment to the vertices of S such that lv = {1, 2, 3} if v is not a leaf and
v 6= y, and lv ⊂ {1, 2, 3} with |lv| = 2 if v is a leaf or v = y. Let bi = ax

i + ay
i for i = 0, 2, 4,

and let b1 = ax
1 + ay

1 − 1. Then S is descending-equitably L-colorable if 2b4 + b2 ≥ b1− 1 + ε and
b4 ≥ 1, where ε = 3ds/3e − s.

Proof. Let c, c′ be the colors allowed at y. Let pi (1 = 1, 2, 3) be the desired size of Vi. Note that
pc + pc′ ≤ bs/3c+ ds/3e. Let Si (i = c, c′) be a maximum independent set such that Si contains
x and y, and such that i ∈ lv for all v ∈ Si. Then no vertex of a 1-thread is in any of the Si;
each 2-thread contains a vertex (the leaf) that is in at least one of Si’s; and for each 4-thread,
the leaf is in at least one of the Si’s, and the vertex 1-vertex-away from the root is in both of
the Si’s. Thus |Sc|+ |Sc′ | ≥ 4 + 3b4 + b2.

If |Sc|+ |Sc′ | > 2(ds/3e − 1), then some color may be assigned to the root and extended to a
large enough independent set. Thus we assume that 4 + 3b4 + b2 ≤ |Sc|+ |Sc′ | ≤ 2(ds/3e − 1) =
2
3 (s+ε−3) = 2

3 (4b4+2b2+b1+2). Therefore we have b4+14 ≤ b2+2(b1+ε) ≤ b2+2(2b4+b2)+2,
that is b4+b2 ≥ 4. So b2+2(b1+ε) ≥ b4+14 ≥ 18−b2, and we have b1+b2+ε ≥ 9, a contradiction
since b1 + b2 ≤ 6 and ε ≤ 2.

Let c be the color assigned to x and y, and let c′ and c′′ be the other two colors. Without loss
of generality assume we want |Vc′ | ≥ |Vc′′ |. We color with c′ first. By hypothesis, we know that
2b4 + b2 ≥

⌈
s
3

⌉
, so there is an independent set I large enough for c′ which misses x and y, which

misses all leaves, and which moreover misses the vertices colored with c. Color I with c′, color
the remaining vertices with c′′. Now I contains no leaves, and it is easy to see we can pair the
vertices colored c′′ with vertices colored c′ such that if there is any conflict on a leaf, the colors
can be switched without altering the rest of the coloring. �

5. Equitable 3-coloring

In this section, we prove Theorem 1.3.
By Theorem 1.2, we only need to show that planar graphs with minimum degree at least two

and girth at least 14 are equitably 3-colorable. Suppose not, and let G be a counterexample
with |V |+ |E| as small as possible.

Claim 5.1. G has no t-thread where t = 3 or t ≥ 5, and no thread with the same endpoints.

Proof. The proof is more or less a line by line copy of the proof of Claim 3.1, so we omit it
here. �
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Similarly to Section 3, for a vertex x, let T (x) = (a4, a2, a1, a0), where ai is the number of
i-threads incident to x, and let t(x) = 4a4 + 2a2 + a1.

Claim 5.2. Let x be a vertex with 3 ≤ d(x) ≤ 6. Then
(a) if d(x) = 3, then either t(x) ≤ 4 or T (x) = (1, 0, 2, 0);
(b) if d(x) = 4, then t(x) ≤ 7 or T (x) = (2, 0, 0, 2);
(c) if d(x) ∈ {5, 6}, then a4 ≤ d(x)− 2.

Proof. Assume that t(x) ≥ 5 when d(x) = 3, t(x) ≥ 8 when d(x) = 4, and a4 ≥ d(x) − 1 when
d(x) ∈ {5, 6}.

Note that when d(x) ∈ {3, 5, 6}, a0 ≤ 1. When d(x) = 4, a0 > 1 and t(x) ≥ 8 only if
a4 = a0 = 2, in which case we are done. So we may assume a0 ≤ 1, thus Lemma 4.1 applies.

Let H be the graph formed by x and its loosely adjacent 2-vertices. Then G − H has an
equitable 3-coloring f , and we may assume that f cannot be extended to H. Thus by Lemma 4.1,

(3) 2a4 + a2 ≤ a1 + ε,

where ε = 3d |V (H)|
3 e − |V (H)|. Since t(x) = 4a4 + 2a2 + a1, we have

(4) t(x) = 2(2a4 + a2) + a1 ≤ 3a1 + 2ε.

Let d(x) = 3. By (4), a1 ≥ 1. Then (a4, a2) ∈ {(1, 1), (2, 0), (1, 0), (0, 2)} If (a4, a2) = (1, 1),
then ε = 1 and a1 = 1, a contradiction to (3); if (a4, a2) = (2, 0), then a1 = 1 and ε = 2, a
contradiction to (3) again; and if (a4, a2) = (0, 2), then a1 = 1 and ε = 0, another contradiction
to (3). So (a4, a2) = (1, 0). It follows that a1 = 2 or a1 = a0 = 1. If a1 = a0 = 1, then ε = 0, a
contradiction to (3). Therefore a1 = 2 and T (x) = (1, 0, 2, 0).

Let d(x) = 4. By (4), a1 ≥ 2. Then (a4, a2) ∈ {(1, 1), (2, 0)}. If (a4, a2) = (1, 1), then ε = 0,
and by (3), a1 ≥ 3 and thus a4 +a2 ≤ 1, a contradiction; if (a4, a2) = (2, 0), then ε = 1 and thus
a1 = 2, a contradiction to (3).

If d(x) ∈ {5, 6}, then a1 ≤ 1, and clearly we have a contradiction to (3). �

We call a 3-vertex x bad if T (x) = (1, 0, 2, 0)

Claim 5.3. Let x be a bad 3-vertex. Let y be a 3-vertex which is loosely 1-adjacent to x. Then
(a) y is not in a t-thread where t ≥ 2; hence t(y) ≤ 3; and
(b) x is the only bad 3-vertex to which y is loosely 1-adjacent.

Proof. (a) Suppose y is a 3-vertex which is loosely 1-adjacent to x. Suppose also that y is incident
with a t−thread where t ≥ 2. Let H be the union of x, y, and all 2-vertices loosely adjacent to
x or y. We apply Lemma 4.2 to H, observing that b4 = ay

4 + 1, b2 = ay
2, and b1 = ay

1 + 1. We
find that H is reducible if 2b4 + b2 ≥ b1 + ε− 1 or equivalently if 2ay

4 + ay
2 ≥ a

y
1 + ε− 2..

Now if ay
1 = 1, then we are done because 2ay

4 +ay
2 ≥ 1 ≥ ε−1 = ay

1 + ε−2. Since y is adjacent
to a t-thread with t ≥ 2, it must be that ay

1 = 2. Thus we may reduce H if 2ay
4 + ay

2 ≥ ε. This
is obviously true if ay

4 > 0. Thus we may assume ay
2 = 1. But in this case |H| = 11, ε = 1, and

ay
2 ≥ ε. Thus H is reducible.

(b) Suppose now that y is a 3-vertex which is loosely 1-adjacent to x and another bad 3-vertex,
z. Let H be the graph induced by x, y, z, and all the 2-vertices loosely adjacent to x, y, or z.
Let G′ be G−H. G′ is equitably 3-colorable by induction, and we need to extend this equitable
3-coloring to all of G. We will 3-color H, and for i = 1, 2, 3 let Ui be the set of vertices of H
colored by i. For the coloring to remain equitable, we need |U1| ≥ |U2| ≥ |U3| ≥ |U1| − 1. Call a
proper coloring of H “good” if it satisfies |U1| ≥ |U2| ≥ |U3| ≥ |U1| − 1.

The union of x, y, z together with the 1-threads at x and z forms a 9-path; let us label it
as v1w1xw2yw3zw4v2. Label the 4-thread at x as xx1x2x3x4v3, and label the 4-thread at z as
zz1z2z3z4v4.

First suppose that y is adjacent to a 0-thread. Then |Ui| should be 5 for all i, and some color
is disallowed at y by its adjacency to G′. Assume without loss of generality that 3 is an allowed
color at y. Let U ′1 = {w1, w4, x1, x3, z3}, U ′2 = {w2, w3, x4, z1, z4}, and U ′3 = {x, y, z, x2, z2}.
This is a good coloring of H, so it only remains to repair any conflicts at the leaves of H when H
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is attached to G′. Notice that if there is a conflict with the leaf adjacent to w1, we may simply
switch the colors on w1 and w2. Likewise we may pair w3 with w4, x3 with x4, and z3 with z4,
switching any pair if there is a conflict at the associated leaf. Any such switch results in another
good coloring of H, and switching any pair does not interfere with any other pair. Thus we may
obtain appropriate Ui in this case.

If y is incident to a third 1-thread with 2-vertex y1, then we keep the U ′is as before and color
y1 by 1. Note that y1 and z1 form another switchable pair if there is a conflict at y1.

By (a), y is not incident to any t-thread with t ≥ 2, so the proof of the claim is complete. �

Since g(G) ≥ 14, we have mad(G) < 7
3 . Let M(x) = d(x)− 7

3 be the initial charge of x for x ∈ V .
We will re-distribute the charges among vertices according to the discharging rules below:

(R1) Every (≥ 3)-vertex sends 1
6 to each loosely adjacent 2-vertex;

(R2) Every (≥ 3)-vertex sends 1
6 to each loosely 1-adjacent bad 3-vertex.

Let M ′(x) be the final charge of x. The following Claim shows a contradiction to (1), which
in turn implies the truth of Theorem 1.3.

Claim 5.4. For each x ∈ V , M ′(x) ≥ 0.

Proof. If d(x) = 2, then M ′(x) = 2− 7
3 + 2 · 1

6 = 0.
If d(x) = 3, then if x is bad, it gains two 1

6 from each of the two loosely 1-adjacent vertices,
thus M ′(x) = 3− 7

3 − 6 · 1
6 + 2 · 1

6 = 0; if x is not bad and is not loosely 1-adjacent to to a bad
vertex, then M ′(x) = 3− 7

3 −4 · 16 = 0; if x is not bad and is loosely 1-adjacent to a bad 3-vertex,
then t(x) ≤ 3, thus M ′(x) = 3− 7

3 − 3 · 1
6 −

1
6 = 0.

For d(x) ≥ 4, note that M ′(x) = d(x)− 7
3 −

(4a4+2a2+2a1)
6 . Since d(x) = a4 + a2 + a1 + a0, we

have
M ′(x) =

1
3

(2d(x)− 7− a4 + a0).

When d(x) ≥ 7, M ′(x) ≥ (d(x) − a4 + a0)/3 ≥ 0. When d(x) ∈ {5, 6}, by Claim 5.2
a4 ≤ d(x)− 2, thus M ′(x) ≥ 0.

Now consider x with d(x) = 4. To show M ′(x) ≥ 0, it suffices to show that a4 ≤ a0 +1, which
is true, since by Claim 5.2, a4 ≤ 1. �
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